- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0012000000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Hartmanns, Arnd (3)
-
Budde, Carlos E (2)
-
Parker, David (2)
-
Quatmann, Tim (2)
-
Zhang, Zhen (2)
-
Andriushchenko, Roman (1)
-
Bartocci, Ezio (1)
-
Beyer, Dirk (1)
-
Black, Paul E. (1)
-
Bork, Alexander (1)
-
Fedyukovich, Grigory (1)
-
Garavel, Hubert (1)
-
Grover, Kush (1)
-
Hahn, Ernst Moritz (1)
-
Huisman, Marieke (1)
-
Israelsen, Bryant (1)
-
Jansen, Nils (1)
-
Jeppson, Joshua (1)
-
Junges, Sebastian (1)
-
Klauck, Michaela (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The analysis of formal models that include quantitative aspects such as timing or probabilistic choices is performed by quantitative verification tools. Broad and mature tool support is available for computing basic properties such as expected rewards on basic models such as Markov chains. Previous editions of QComp, the comparison of tools for the analysis of quantitative formal models, focused on this setting. Many application scenarios, however, require more advanced property types such as LTL and parameter synthesis queries as well as advanced models like stochastic games and partially observable MDPs. For these, tool support is in its infancy today. This paper presents the outcomes of QComp 2023: a survey of the state of the art in quantitative verification tool support for advanced property types and models. With tools ranging from first research prototypes to well-supported integrations into established toolsets, this report highlights today’s active areas and tomorrow’s challenges in tool-focused research for quantitative verification.more » « less
-
Budde, Carlos E; Hartmanns, Arnd; Klauck, Michaela; Kretinsky, Jan; Parker, David; Quatmann, Tim; Turrini, Andrea; Zhang, Zhen (, The 9th International Symposium On Leveraging Applications of Formal Methods, Verification and Validation)Quantitative verification tools compute probabilities, expected rewards, or steady-state values for formal models of stochastic and timed systems. Exact results often cannot be obtained efficiently, so most tools use floating-point arithmetic in iterative algorithms that approximate the quantity of interest. Correctness is thus defined by the desired precision and determines performance. In this paper, we report on the experimental evaluation of these trade-offs performed in QComp 2020: the second friendly competition of tools for the analysis of quantitative formal models. We survey the precision guarantees—ranging from exact rational results to statistical confidence statements—offered by the nine participating tools. They gave rise to a performance evaluation using five tracks with varying correctness criteria, of which we present the results.more » « less
-
Bartocci, Ezio; Beyer, Dirk; Black, Paul E.; Fedyukovich, Grigory; Garavel, Hubert; Hartmanns, Arnd; Huisman, Marieke; Kordon, Fabrice; Nagele, Julian; Sighireanu, Mihaela; et al (, Tools and Algorithms for the Construction and Analysis of Systems)Evaluation of scientific contributions can be done in many different ways. For the various research communities working on the verification of systems (software, hardware, or the underlying involved mechanisms), it is important to bring together the community and to compare the state of the art, in order to identify progress of and new challenges in the research area. Competitions are a suitable way to do that.more » « less
An official website of the United States government
